Step
*
1
2
1
1
2
2
of Lemma
Euler-Fermat
1. n : {2...}
2. a : ℕ+
3. CoPrime(n,a)
4. Πx ∈ map(λi.(ai mod n);residues-mod(n)). x = Πx ∈ residues-mod(n). x ∈ ℤ
5. Πx ∈ residues-mod(n). (ax mod n) = Πx ∈ residues-mod(n). x ∈ ℤ
6. (Πx ∈ residues-mod(n). x * a^totient(n)) ≡ (Πx ∈ residues-mod(n). x * 1) mod n
7. u : {x:ℤ| CoPrime(n,x)}
8. v : {x:ℤ| CoPrime(n,x)} List
9. CoPrime(accumulate (with value c and list item x): x * cover list: vwith starting value: 1),n)
⊢ CoPrime(u * accumulate (with value c and list item x): x * cover list: vwith starting value: 1),n)
BY
{ (BLemma `coprime_symmetry`
THEN Auto
THEN BLemma `coprime_prod`
THEN Auto
THEN Try ((BLemma `coprime_symmetry` THEN Complete (Auto)))) }
Latex:
Latex:
1. n : \{2...\}
2. a : \mBbbN{}\msupplus{}
3. CoPrime(n,a)
4. \mPi{}x \mmember{} map(\mlambda{}i.(ai mod n);residues-mod(n)). x = \mPi{}x \mmember{} residues-mod(n). x
5. \mPi{}x \mmember{} residues-mod(n). (ax mod n) = \mPi{}x \mmember{} residues-mod(n). x
6. (\mPi{}x \mmember{} residues-mod(n). x * a\^{}totient(n)) \mequiv{} (\mPi{}x \mmember{} residues-mod(n). x * 1) mod n
7. u : \{x:\mBbbZ{}| CoPrime(n,x)\}
8. v : \{x:\mBbbZ{}| CoPrime(n,x)\} List
9. CoPrime(accumulate (with value c and list item x): x * cover list: vwith starting value: 1),n)
\mvdash{} CoPrime(u * accumulate (with value c and list item x): x * cover list: vwith starting value: 1)
,n)
By
Latex:
(BLemma `coprime\_symmetry`
THEN Auto
THEN BLemma `coprime\_prod`
THEN Auto
THEN Try ((BLemma `coprime\_symmetry` THEN Complete (Auto))))
Home
Index