Nuprl Lemma : Euler-Fermat

Euler's Generalization Of Fermat's 
 (we also have different, combinatorial, proof of
  fermat-littlefermat-little2)⋅

n:{2...}. ∀a:ℕ+.  (CoPrime(n,a)  (a^totient(n) ≡ mod n))


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  totient: totient(n) eqmod: a ≡ mod m coprime: CoPrime(a,b) exp: i^n int_upper: {i...} nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q bag-product: Πx ∈ b. f[x] bag-map: bag-map(f;bs) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A nat: int_upper: {i...} nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] residue-mul: (ai mod n) modulus: mod n remainder: rem m residue: residue(n) int_seg: {i..j-} cand: c∧ B assoc: Assoc(T;op) infix_ap: y comm: Comm(T;op) squash: T totient: totient(n) bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) lelt: i ≤ j < k so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} sq_stable: SqStable(P) ge: i ≥  uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q cons: [a b] colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b true: True coprime: CoPrime(a,b) gcd_p: GCD(a;b;y)
Lemmas referenced :  bag-summation-map residues-mod_wf upper_subtype_nat istype-false subtype_rel_list residue_wf nat_plus_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le top_wf coprime_wf nat_plus_wf istype-int_upper assoc_wf comm_wf bag_wf residues-equal-bags list-subtype-bag equal-wf-T-base subtype_rel_bag set_subtype_base le_wf int_subtype_base decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma bag-product_wf squash_wf subtype_rel_sets lelt_wf istype-less_than list_induction all_wf eqmod_wf list_accum_wf exp_wf2 length_wf_nat residue-mul_wf decidable__lt intformless_wf int_formula_prop_less_lemma list_wf list_accum_nil_lemma length_of_nil_lemma exp0_lemma mul-commutes one-mul eqmod_refl list_accum_cons_lemma length_of_cons_lemma length_wf add_nat_wf istype-void nat_properties sq_stable__coprime add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf eqmod_functionality_wrt_eqmod eqmod_weakening eqmod_inversion ge_wf set_wf list-cases product_subtype_list colength-cons-not-zero colength_wf_list subtract-1-ge-0 subtype_base_sq spread_cons_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma true_wf istype-universe istype-nat multiply_functionality_wrt_eqmod mod-eqmod mul-associates mul-swap exp_add subtype_rel_self iff_weakening_equal exp1 totient_wf eqmod_cancellation one_divs_any divides_wf coprime_symmetry coprime_prod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination thin Error :memTop,  hypothesisEquality applyEquality natural_numberEquality independent_isectElimination independent_pairFormation hypothesis dependent_functionElimination dependent_set_memberEquality_alt setElimination rename because_Cache unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality universeIsType voidElimination intEquality multiplyEquality inhabitedIsType hyp_replacement equalitySymmetry applyLambdaEquality baseApply closedConclusion baseClosed isect_memberFormation_alt isect_memberEquality_alt axiomEquality isectIsTypeImplies imageElimination productElimination equalityTransitivity productEquality functionIsType universeEquality imageMemberEquality setEquality setIsType productIsType equalityIstype addEquality pointwiseFunctionality promote_hyp intWeakElimination axiomSqEquality functionIsTypeImplies hypothesis_subsumption instantiate sqequalBase cumulativity functionEquality

Latex:
\mforall{}n:\{2...\}.  \mforall{}a:\mBbbN{}\msupplus{}.    (CoPrime(n,a)  {}\mRightarrow{}  (a\^{}totient(n)  \mequiv{}  1  mod  n))



Date html generated: 2020_05_20-AM-08_20_12
Last ObjectModification: 2020_01_01-PM-02_21_03

Theory : general


Home Index