Nuprl Lemma : Euler-Fermat
Euler's Generalization Of Fermat's 
 (we also have a different, combinatorial, proof of
  fermat-little, fermat-little2)⋅
∀n:{2...}. ∀a:ℕ+.  (CoPrime(n,a) 
⇒ (a^totient(n) ≡ 1 mod n))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
totient: totient(n)
, 
eqmod: a ≡ b mod m
, 
coprime: CoPrime(a,b)
, 
exp: i^n
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bag-product: Πx ∈ b. f[x]
, 
bag-map: bag-map(f;bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat: ℕ
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
residue-mul: (ai mod n)
, 
modulus: a mod n
, 
remainder: n rem m
, 
residue: residue(n)
, 
int_seg: {i..j-}
, 
cand: A c∧ B
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
comm: Comm(T;op)
, 
squash: ↓T
, 
totient: totient(n)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
true: True
, 
coprime: CoPrime(a,b)
, 
gcd_p: GCD(a;b;y)
Lemmas referenced : 
bag-summation-map, 
residues-mod_wf, 
upper_subtype_nat, 
istype-false, 
subtype_rel_list, 
residue_wf, 
nat_plus_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
top_wf, 
coprime_wf, 
nat_plus_wf, 
istype-int_upper, 
assoc_wf, 
comm_wf, 
bag_wf, 
residues-equal-bags, 
list-subtype-bag, 
equal-wf-T-base, 
subtype_rel_bag, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
bag-product_wf, 
squash_wf, 
subtype_rel_sets, 
lelt_wf, 
istype-less_than, 
list_induction, 
all_wf, 
eqmod_wf, 
list_accum_wf, 
exp_wf2, 
length_wf_nat, 
residue-mul_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
list_wf, 
list_accum_nil_lemma, 
length_of_nil_lemma, 
exp0_lemma, 
mul-commutes, 
one-mul, 
eqmod_refl, 
list_accum_cons_lemma, 
length_of_cons_lemma, 
length_wf, 
add_nat_wf, 
istype-void, 
nat_properties, 
sq_stable__coprime, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
eqmod_functionality_wrt_eqmod, 
eqmod_weakening, 
eqmod_inversion, 
ge_wf, 
set_wf, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
subtract-1-ge-0, 
subtype_base_sq, 
spread_cons_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
true_wf, 
istype-universe, 
istype-nat, 
multiply_functionality_wrt_eqmod, 
mod-eqmod, 
mul-associates, 
mul-swap, 
exp_add, 
subtype_rel_self, 
iff_weakening_equal, 
exp1, 
totient_wf, 
eqmod_cancellation, 
one_divs_any, 
divides_wf, 
coprime_symmetry, 
coprime_prod
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
Error :memTop, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
universeIsType, 
voidElimination, 
intEquality, 
multiplyEquality, 
inhabitedIsType, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberFormation_alt, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
imageElimination, 
productElimination, 
equalityTransitivity, 
productEquality, 
functionIsType, 
universeEquality, 
imageMemberEquality, 
setEquality, 
setIsType, 
productIsType, 
equalityIstype, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
intWeakElimination, 
axiomSqEquality, 
functionIsTypeImplies, 
hypothesis_subsumption, 
instantiate, 
sqequalBase, 
cumulativity, 
functionEquality
Latex:
\mforall{}n:\{2...\}.  \mforall{}a:\mBbbN{}\msupplus{}.    (CoPrime(n,a)  {}\mRightarrow{}  (a\^{}totient(n)  \mequiv{}  1  mod  n))
Date html generated:
2020_05_20-AM-08_20_12
Last ObjectModification:
2020_01_01-PM-02_21_03
Theory : general
Home
Index