Nuprl Lemma : coprime_wf
∀[a,b:ℤ].  (CoPrime(a,b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coprime: CoPrime(a,b)
Lemmas referenced : 
gcd_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
intEquality, 
Error :universeIsType
Latex:
\mforall{}[a,b:\mBbbZ{}].    (CoPrime(a,b)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_22_35
Last ObjectModification:
2018_09_26-PM-05_49_07
Theory : num_thy_1
Home
Index