Nuprl Lemma : coprime_wf

[a,b:ℤ].  (CoPrime(a,b) ∈ ℙ)


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coprime: CoPrime(a,b)
Lemmas referenced :  gcd_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality intEquality Error :universeIsType

Latex:
\mforall{}[a,b:\mBbbZ{}].    (CoPrime(a,b)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_22_35
Last ObjectModification: 2018_09_26-PM-05_49_07

Theory : num_thy_1


Home Index