Nuprl Lemma : eqmod_refl
∀m,a:ℤ.  (a ≡ a mod m)
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
eqmod_weakening, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
inhabitedIsType
Latex:
\mforall{}m,a:\mBbbZ{}.    (a  \mequiv{}  a  mod  m)
Date html generated:
2020_05_19-PM-10_01_03
Last ObjectModification:
2019_12_31-PM-03_26_48
Theory : num_thy_1
Home
Index