Nuprl Lemma : eqmod_refl

m,a:ℤ.  (a ≡ mod m)


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  eqmod_weakening istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_isectElimination hypothesis inhabitedIsType

Latex:
\mforall{}m,a:\mBbbZ{}.    (a  \mequiv{}  a  mod  m)



Date html generated: 2020_05_19-PM-10_01_03
Last ObjectModification: 2019_12_31-PM-03_26_48

Theory : num_thy_1


Home Index