Nuprl Lemma : eqmod_weakening

m,a,b:ℤ.  a ≡ mod supposing b ∈ ℤ


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m uimplies: supposing a all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  eqmod: a ≡ mod m all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: top: Top subtract: m divides: a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False
Lemmas referenced :  equal-wf-base int_subtype_base divides_wf subtract_wf minus-one-mul add-mul-special zero-mul decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation Error :isect_memberFormation_alt,  cut introduction axiomEquality hypothesis thin rename Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination intEquality hypothesisEquality applyEquality isect_memberEquality voidElimination voidEquality hyp_replacement equalitySymmetry applyLambdaEquality dependent_pairFormation natural_numberEquality dependent_functionElimination because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality baseClosed baseApply closedConclusion

Latex:
\mforall{}m,a,b:\mBbbZ{}.    a  \mequiv{}  b  mod  m  supposing  a  =  b



Date html generated: 2019_06_20-PM-02_24_09
Last ObjectModification: 2018_09_26-PM-05_58_22

Theory : num_thy_1


Home Index