Nuprl Lemma : eqmod_weakening
∀m,a,b:ℤ.  a ≡ b mod m supposing a = b ∈ ℤ
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
eqmod: a ≡ b mod m
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
top: Top
, 
subtract: n - m
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
divides_wf, 
subtract_wf, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
hypothesisEquality, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_pairFormation, 
natural_numberEquality, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
baseClosed, 
baseApply, 
closedConclusion
Latex:
\mforall{}m,a,b:\mBbbZ{}.    a  \mequiv{}  b  mod  m  supposing  a  =  b
Date html generated:
2019_06_20-PM-02_24_09
Last ObjectModification:
2018_09_26-PM-05_58_22
Theory : num_thy_1
Home
Index