Nuprl Lemma : eqmod_cancellation

m,x,a,b:ℤ.  (CoPrime(x,m)  ((x a) ≡ (x b) mod m)  (a ≡ mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m coprime: CoPrime(a,b) all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q eqmod: a ≡ mod m member: t ∈ T uall: [x:A]. B[x] prop: subtract: m top: Top coprime: CoPrime(a,b)
Lemmas referenced :  eqmod_wf coprime_wf istype-int coprime_divides_prod subtract_wf mul-distributes istype-void minus-one-mul mul-commutes mul-swap gcd_p_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution Error :universeIsType,  cut introduction extract_by_obid isectElimination thin hypothesisEquality multiplyEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination sqequalRule Error :isect_memberEquality_alt,  voidElimination because_Cache natural_numberEquality

Latex:
\mforall{}m,x,a,b:\mBbbZ{}.    (CoPrime(x,m)  {}\mRightarrow{}  ((x  *  a)  \mequiv{}  (x  *  b)  mod  m)  {}\mRightarrow{}  (a  \mequiv{}  b  mod  m))



Date html generated: 2019_06_20-PM-02_24_33
Last ObjectModification: 2018_10_17-AM-10_43_36

Theory : num_thy_1


Home Index