Nuprl Lemma : coprime_divides_prod
∀a1,a2,b:ℤ.  ((b | (a1 * a2)) 
⇒ CoPrime(b,a1) 
⇒ (b | a2))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
divides: b | a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
coprime: CoPrime(a,b)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtract: n - m
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
divides: b | a
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_base_sq, 
one-mul, 
mul-commutes, 
minus-one-mul, 
add-associates, 
equal-wf-base, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
mul-swap, 
istype-void, 
mul-distributes, 
int_subtype_base, 
istype-int, 
divides_wf, 
coprime_wf, 
coprime_bezout_id
Rules used in proof : 
minusEquality, 
equalityTransitivity, 
cumulativity, 
instantiate, 
promote_hyp, 
intEquality, 
applyLambdaEquality, 
hyp_replacement, 
independent_pairFormation, 
int_eqEquality, 
Error :lambdaEquality_alt, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
because_Cache, 
voidElimination, 
Error :isect_memberEquality_alt, 
equalitySymmetry, 
sqequalBase, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
applyEquality, 
Error :equalityIstype, 
addEquality, 
Error :dependent_pairFormation_alt, 
Error :inhabitedIsType, 
multiplyEquality, 
isectElimination, 
Error :universeIsType, 
hypothesis, 
independent_functionElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a1,a2,b:\mBbbZ{}.    ((b  |  (a1  *  a2))  {}\mRightarrow{}  CoPrime(b,a1)  {}\mRightarrow{}  (b  |  a2))
Date html generated:
2019_06_20-PM-02_23_51
Last ObjectModification:
2019_06_18-PM-10_47_49
Theory : num_thy_1
Home
Index