Nuprl Lemma : coprime_divides_prod

a1,a2,b:ℤ.  ((b (a1 a2))  CoPrime(b,a1)  (b a2))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) divides: a all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  coprime: CoPrime(a,b) sq_type: SQType(T) guard: {T} subtract: m false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) top: Top subtype_rel: A ⊆B divides: a prop: uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  subtype_base_sq one-mul mul-commutes minus-one-mul add-associates equal-wf-base int_formula_prop_wf int_term_value_add_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf itermConstant_wf itermSubtract_wf itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int mul-swap istype-void mul-distributes int_subtype_base istype-int divides_wf coprime_wf coprime_bezout_id
Rules used in proof :  minusEquality equalityTransitivity cumulativity instantiate promote_hyp intEquality applyLambdaEquality hyp_replacement independent_pairFormation int_eqEquality Error :lambdaEquality_alt,  approximateComputation independent_isectElimination natural_numberEquality unionElimination because_Cache voidElimination Error :isect_memberEquality_alt,  equalitySymmetry sqequalBase baseClosed closedConclusion baseApply sqequalRule applyEquality Error :equalityIstype,  addEquality Error :dependent_pairFormation_alt,  Error :inhabitedIsType,  multiplyEquality isectElimination Error :universeIsType,  hypothesis independent_functionElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a1,a2,b:\mBbbZ{}.    ((b  |  (a1  *  a2))  {}\mRightarrow{}  CoPrime(b,a1)  {}\mRightarrow{}  (b  |  a2))



Date html generated: 2019_06_20-PM-02_23_51
Last ObjectModification: 2019_06_18-PM-10_47_49

Theory : num_thy_1


Home Index