Nuprl Lemma : coprime_symmetry
∀a,b:ℤ.  (CoPrime(a,b) 
⇒ CoPrime(b,a))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
gcd_p_wf, 
gcd_p_sym
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  {}\mRightarrow{}  CoPrime(b,a))
Date html generated:
2018_05_21-PM-01_09_45
Last ObjectModification:
2018_01_28-PM-02_03_32
Theory : num_thy_1
Home
Index