Nuprl Lemma : eqmod_functionality_wrt_eqmod

m,m',a,a',b,b':ℤ.  (a ≡ a' mod m)  (b ≡ b' mod m)  (a ≡ mod ⇐⇒ a' ≡ b' mod m') supposing m' ∈ ℤ


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  eqmod_wf equal-wf-base int_subtype_base eqmod_inversion eqmod_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation Error :isect_memberFormation_alt,  cut introduction axiomEquality hypothesis thin rename independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality Error :universeIsType,  intEquality applyEquality sqequalRule equalitySymmetry hyp_replacement applyLambdaEquality dependent_functionElimination independent_functionElimination because_Cache

Latex:
\mforall{}m,m',a,a',b,b':\mBbbZ{}.
    (a  \mequiv{}  a'  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  b'  mod  m)  {}\mRightarrow{}  (a  \mequiv{}  b  mod  m  \mLeftarrow{}{}\mRightarrow{}  a'  \mequiv{}  b'  mod  m')  supposing  m  =  m'



Date html generated: 2019_06_20-PM-02_24_18
Last ObjectModification: 2018_09_26-PM-05_58_20

Theory : num_thy_1


Home Index