Nuprl Lemma : eqmod_transitivity

m,a,b,c:ℤ.  ((a ≡ mod m)  (b ≡ mod m)  (a ≡ mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] eqmod: a ≡ mod m subtract: m top: Top
Lemmas referenced :  istype-int subtract_wf divides_wf divisor_of_sum minus-one-mul add-associates istype-void add-swap add-mul-special zero-mul zero-add
Rules used in proof :  Error :inhabitedIsType,  hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  Error :lambdaFormation_alt,  computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution dependent_functionElimination independent_functionElimination Error :isect_memberEquality_alt,  voidElimination because_Cache multiplyEquality minusEquality natural_numberEquality

Latex:
\mforall{}m,a,b,c:\mBbbZ{}.    ((a  \mequiv{}  b  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  c  mod  m)  {}\mRightarrow{}  (a  \mequiv{}  c  mod  m))



Date html generated: 2019_06_20-PM-02_24_12
Last ObjectModification: 2019_01_17-AM-08_47_54

Theory : num_thy_1


Home Index