Nuprl Lemma : divisor_of_sum

a,b1,b2:ℤ.  ((a b1)  (a b2)  (a (b1 b2)))


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] implies:  Q add: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] divides: a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q
Lemmas referenced :  equal_wf int_formula_prop_wf int_term_value_mul_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMultiply_wf itermVar_wf itermAdd_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality productElimination dependent_pairFormation addEquality dependent_functionElimination because_Cache unionElimination natural_numberEquality independent_isectElimination lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll multiplyEquality

Latex:
\mforall{}a,b1,b2:\mBbbZ{}.    ((a  |  b1)  {}\mRightarrow{}  (a  |  b2)  {}\mRightarrow{}  (a  |  (b1  +  b2)))



Date html generated: 2016_05_14-PM-04_16_18
Last ObjectModification: 2016_01_14-PM-11_42_30

Theory : num_thy_1


Home Index