Nuprl Lemma : mod-eqmod

x:ℤ. ∀m:ℕ+.  ((x mod m) ≡ mod m)


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m modulus: mod n nat_plus: + all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q iff: ⇐⇒ Q
Lemmas referenced :  nat_plus_wf modulus-idempotent equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties nequal_wf less_than_wf subtype_rel_sets modulus_wf modulus-equal-iff-eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule intEquality because_Cache lambdaEquality natural_numberEquality hypothesis independent_isectElimination setElimination rename setEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}m:\mBbbN{}\msupplus{}.    ((x  mod  m)  \mequiv{}  x  mod  m)



Date html generated: 2016_05_14-PM-04_23_01
Last ObjectModification: 2016_01_14-PM-11_39_09

Theory : num_thy_1


Home Index