Nuprl Lemma : modulus-idempotent

x:ℤ. ∀m:ℕ+.  (((x mod m) mod m) (x mod m) ∈ ℤ)


Proof




Definitions occuring in Statement :  modulus: mod n nat_plus: + all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  mod_bounds modulus_wf subtype_rel_sets less_than_wf nequal_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base nat_wf modulus_base lelt_wf le_wf equal_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule intEquality because_Cache lambdaEquality natural_numberEquality hypothesis independent_isectElimination setElimination rename setEquality applyLambdaEquality dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed independent_functionElimination productElimination dependent_set_memberEquality productEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}m:\mBbbN{}\msupplus{}.    (((x  mod  m)  mod  m)  =  (x  mod  m))



Date html generated: 2017_04_17-AM-09_42_56
Last ObjectModification: 2017_02_27-PM-05_37_38

Theory : num_thy_1


Home Index