Nuprl Lemma : modulus_base

[m:ℕ+]. ∀[a:ℕm].  (a mod a)


Proof




Definitions occuring in Statement :  modulus: mod n int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] modulus: mod n has-value: (a)↓ nat_plus: + int_seg: {i..j-} nequal: a ≠ b ∈  not: ¬A implies:  Q false: False lelt: i ≤ j < k and: P ∧ Q guard: {T} all: x:A. B[x] prop: le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B int_nzero: -o decidable: Dec(P) subtract: m
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base value-type-has-value int-value-type less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf rem_bounds_1 lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot int_seg_wf nat_plus_wf div_bounds_1 int_seg_subtype_nat false_wf div_rem_sum subtype_rel_sets nequal_wf equal-wf-base decidable__int_equal zero-mul zero-add decidable__le not-le-2 not-equal-2 add_functionality_wrt_le add-associates add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero minus-one-mul add-swap minus-one-mul-top le-add-cancel2 mul_preserves_le nat_plus_subtype_nat le_reflexive multiply-is-int-iff add-is-int-iff mul-commutes one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality callbyvalueReduce remainderEquality because_Cache setElimination rename lambdaFormation productElimination dependent_functionElimination independent_functionElimination voidElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation promote_hyp impliesFunctionality applyEquality setEquality dependent_set_memberEquality addEquality minusEquality multiplyEquality baseApply closedConclusion

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[a:\mBbbN{}m].    (a  mod  m  \msim{}  a)



Date html generated: 2017_04_14-AM-07_19_10
Last ObjectModification: 2017_02_27-PM-02_53_28

Theory : arithmetic


Home Index