Nuprl Lemma : sq_stable__coprime

i,j:ℤ.  SqStable(CoPrime(i,j))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) sq_stable: SqStable(P) all: x:A. B[x] int:
Definitions unfolded in proof :  coprime: CoPrime(a,b) sq_stable: SqStable(P) gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] squash: T
Lemmas referenced :  decidable__divides_ext sq_stable_from_decidable all_wf squash_wf divides_wf and_wf one_divs_any
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_pairFormation productElimination isectElimination intEquality natural_numberEquality lambdaEquality functionEquality imageElimination independent_functionElimination introduction imageMemberEquality baseClosed

Latex:
\mforall{}i,j:\mBbbZ{}.    SqStable(CoPrime(i,j))



Date html generated: 2016_05_14-PM-04_19_39
Last ObjectModification: 2016_01_14-PM-11_40_21

Theory : num_thy_1


Home Index