Nuprl Lemma : sq_stable__coprime
∀i,j:ℤ.  SqStable(CoPrime(i,j))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
coprime: CoPrime(a,b)
, 
sq_stable: SqStable(P)
, 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
Lemmas referenced : 
decidable__divides_ext, 
sq_stable_from_decidable, 
all_wf, 
squash_wf, 
divides_wf, 
and_wf, 
one_divs_any
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
productElimination, 
isectElimination, 
intEquality, 
natural_numberEquality, 
lambdaEquality, 
functionEquality, 
imageElimination, 
independent_functionElimination, 
introduction, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}i,j:\mBbbZ{}.    SqStable(CoPrime(i,j))
Date html generated:
2016_05_14-PM-04_19_39
Last ObjectModification:
2016_01_14-PM-11_40_21
Theory : num_thy_1
Home
Index