Nuprl Lemma : fermat-little
∀p:ℕ. (prime(p) ⇒ (∀x:ℕ. (x^p ≡ x mod p)))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m, 
prime: prime(a), 
exp: i^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
prop: ℙ, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
inject: Inj(A;B;f), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
false: False, 
guard: {T}, 
less_than: a < b, 
squash: ↓T, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
rotate: rot(n), 
compose: f o g, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ifthenelse: if b then t else f fi , 
btrue: tt, 
sq_type: SQType(T), 
le: A ≤ B, 
subtract: n - m, 
uiff: uiff(P;Q), 
bfalse: ff, 
equipollent: A ~ B, 
prime: prime(a), 
less_than': less_than'(a;b), 
biject: Bij(A;B;f), 
surject: Surj(A;B;f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅
Lemmas referenced : 
eqmod-prime-order-fixedpoints, 
exp_wf4, 
prime_wf, 
nat_wf, 
int_seg_wf, 
compose_wf, 
rotate_wf, 
equipollent-exp, 
equipollent_wf, 
exp_wf2, 
inject_wf, 
equal_wf, 
fun_exp_wf, 
istype-universe, 
int_seg_properties, 
nat_properties, 
decidable__le, 
le_wf, 
less_than_wf, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__equal_int, 
subtract_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
bool_wf, 
eq_int_eq_true, 
btrue_wf, 
subtype_rel_self, 
iff_weakening_equal, 
set_subtype_base, 
int_subtype_base, 
ifthenelse_wf, 
subtype_base_sq, 
eq_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base-T, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
bool_cases, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
biject_wf, 
istype-false, 
ge_wf, 
subtract-1-ge-0, 
equal-wf-T-base, 
subtract-add-cancel, 
uiff_transitivity, 
int_seg_subtype_nat, 
lelt_wf, 
fun_exp_compose2, 
rotate-order
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
Error :inhabitedIsType, 
Error :universeIsType, 
setElimination, 
rename, 
Error :dependent_pairFormation_alt, 
functionEquality, 
natural_numberEquality, 
Error :lambdaEquality_alt, 
because_Cache, 
Error :functionIsType, 
independent_pairFormation, 
sqequalRule, 
Error :productIsType, 
setEquality, 
applyEquality, 
Error :equalityIsType1, 
Error :functionExtensionality_alt, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
Error :equalityIsType3, 
baseApply, 
closedConclusion, 
intEquality, 
addEquality, 
Error :equalityIsType4, 
cumulativity, 
Error :setIsType, 
intWeakElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
equalityElimination, 
hyp_replacement
Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}.  (x\^{}p  \mequiv{}  x  mod  p)))
Date html generated:
2019_06_20-PM-02_28_52
Last ObjectModification:
2018_10_05-PM-10_53_52
Theory : num_thy_1
Home
Index