Nuprl Lemma : fun_exp_compose2

[A,B:Type]. ∀[h:A ⟶ A]. ∀[n:ℕ].  g.(g h)^n g.(g h^n)) ∈ ((A ⟶ B) ⟶ A ⟶ B))


Proof




Definitions occuring in Statement :  fun_exp: f^n compose: g nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A top: Top eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt compose: g squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf fun_exp_unroll false_wf le_wf equal_wf squash_wf true_wf eta_conv iff_weakening_equal decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_weakening eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int compose_wf fun_exp_wf not-le-2 not-equal-2 nat_wf fun_exp_add_apply1 fun_exp_apply_add1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination axiomEquality dependent_set_memberEquality independent_pairFormation isect_memberEquality voidEquality because_Cache applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality cumulativity imageMemberEquality baseClosed universeEquality productElimination unionElimination addEquality intEquality minusEquality equalityElimination dependent_pairFormation promote_hyp instantiate hyp_replacement applyLambdaEquality functionExtensionality

Latex:
\mforall{}[A,B:Type].  \mforall{}[h:A  {}\mrightarrow{}  A].  \mforall{}[n:\mBbbN{}].    (\mlambda{}g.(g  o  h)\^{}n  =  (\mlambda{}g.(g  o  h\^{}n)))



Date html generated: 2017_04_14-AM-07_34_50
Last ObjectModification: 2017_02_27-PM-03_07_51

Theory : fun_1


Home Index