Nuprl Lemma : eqmod-prime-order-fixedpoints
∀n,k,p:ℕ.
  (prime(p)
  
⇒ (∃T:Type. ∃f:T ⟶ T. (T ~ ℕn ∧ Inj(T;T;f) ∧ {x:T| (f x) = x ∈ T}  ~ ℕk ∧ (∀x:T. ((f^p x) = x ∈ T))))
  
⇒ (n ≡ k mod p))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
prime: prime(a)
, 
equipollent: A ~ B
, 
fun_exp: f^n
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
orbit: orbit(T;f;L)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
assoced: a ~ b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
eqmod-by-orbits, 
member-less_than, 
length_wf, 
no_repeats_witness, 
int_seg_wf, 
orbit_wf, 
list_wf, 
inject_wf, 
equipollent_wf, 
equal_wf, 
all_wf, 
isect_wf, 
or_wf, 
equal-wf-T-base, 
divides_wf, 
exists_wf, 
fun_exp_wf, 
prime_wf, 
nat_wf, 
orbit-size-divides-order, 
divides-prime, 
assoced_nelim, 
length_wf_nat, 
false_wf, 
le_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
hypothesis, 
independent_pairFormation, 
isect_memberFormation, 
sqequalRule, 
independent_pairEquality, 
isectElimination, 
natural_numberEquality, 
cumulativity, 
independent_isectElimination, 
lambdaEquality, 
axiomEquality, 
rename, 
functionExtensionality, 
applyEquality, 
productEquality, 
because_Cache, 
setEquality, 
baseClosed, 
setElimination, 
functionEquality, 
intEquality, 
instantiate, 
universeEquality, 
unionElimination, 
inrFormation, 
inlFormation, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}n,k,p:\mBbbN{}.
    (prime(p)
    {}\mRightarrow{}  (\mexists{}T:Type.  \mexists{}f:T  {}\mrightarrow{}  T.  (T  \msim{}  \mBbbN{}n  \mwedge{}  Inj(T;T;f)  \mwedge{}  \{x:T|  (f  x)  =  x\}    \msim{}  \mBbbN{}k  \mwedge{}  (\mforall{}x:T.  ((f\^{}p  x)  =  x))))
    {}\mRightarrow{}  (n  \mequiv{}  k  mod  p))
Date html generated:
2017_04_17-AM-09_50_07
Last ObjectModification:
2017_02_27-PM-05_46_25
Theory : num_thy_1
Home
Index