Nuprl Lemma : eqmod-prime-order-fixedpoints

n,k,p:ℕ.
  (prime(p)
   (∃T:Type. ∃f:T ⟶ T. (T ~ ℕn ∧ Inj(T;T;f) ∧ {x:T| (f x) x ∈ T}  ~ ℕk ∧ (∀x:T. ((f^p x) x ∈ T))))
   (n ≡ mod p))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m prime: prime(a) equipollent: B fun_exp: f^n inject: Inj(A;B;f) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B uimplies: supposing a orbit: orbit(T;f;L) uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] or: P ∨ Q subtype_rel: A ⊆B guard: {T} assoced: b le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A iff: ⇐⇒ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  eqmod-by-orbits member-less_than length_wf no_repeats_witness int_seg_wf orbit_wf list_wf inject_wf equipollent_wf equal_wf all_wf isect_wf or_wf equal-wf-T-base divides_wf exists_wf fun_exp_wf prime_wf nat_wf orbit-size-divides-order divides-prime assoced_nelim length_wf_nat false_wf le_wf nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation hypothesis independent_pairFormation isect_memberFormation sqequalRule independent_pairEquality isectElimination natural_numberEquality cumulativity independent_isectElimination lambdaEquality axiomEquality rename functionExtensionality applyEquality productEquality because_Cache setEquality baseClosed setElimination functionEquality intEquality instantiate universeEquality unionElimination inrFormation inlFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}n,k,p:\mBbbN{}.
    (prime(p)
    {}\mRightarrow{}  (\mexists{}T:Type.  \mexists{}f:T  {}\mrightarrow{}  T.  (T  \msim{}  \mBbbN{}n  \mwedge{}  Inj(T;T;f)  \mwedge{}  \{x:T|  (f  x)  =  x\}    \msim{}  \mBbbN{}k  \mwedge{}  (\mforall{}x:T.  ((f\^{}p  x)  =  x))))
    {}\mRightarrow{}  (n  \mequiv{}  k  mod  p))



Date html generated: 2017_04_17-AM-09_50_07
Last ObjectModification: 2017_02_27-PM-05_46_25

Theory : num_thy_1


Home Index