Nuprl Lemma : eqmod-by-orbits

n,k,p:ℕ.
  ((∃T:Type
     ∃f:T ⟶ T
      (T ~ ℕn
      ∧ Inj(T;T;f)
      ∧ {x:T| (f x) x ∈ T}  ~ ℕk
      ∧ (∀L:T List. (||L|| 1 ∈ ℤ) ∨ (p ||L||) supposing orbit(T;f;L))))
   (n ≡ mod p))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m divides: a equipollent: B orbit: orbit(T;f;L) length: ||as|| list: List inject: Inj(A;B;f) int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] l_sum: l_sum(L) iff: ⇐⇒ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff rev_implies:  Q eqmod: a ≡ mod m subtract: m top: Top cand: c∧ B equipollent: B less_than': less_than'(a;b) compose: g true: True cons: [a b] inject: Inj(A;B;f) surject: Surj(A;B;f) biject: Bij(A;B;f) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] no_repeats: no_repeats(T;l) l_disjoint: l_disjoint(T;l1;l2) assert: b orbit: orbit(T;f;L) rev_uimplies: rev_uimplies(P;Q) listp: List+ l_member: (x ∈ l)
Lemmas referenced :  count-by-orbits subtype_base_sq int_subtype_base select_wf list_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma int_seg_wf istype-universe equipollent_wf inject_wf equal_wf orbit_wf length_wf_nat set_subtype_base le_wf divides_wf istype-nat list_induction l_all_wf equal-wf-base l_member_wf eqmod_wf l_sum_wf map_wf top_wf filter_wf5 subtype_rel_list eq_int_wf map_nil_lemma filter_nil_lemma reduce_nil_lemma length_of_nil_lemma map_cons_lemma filter_cons_lemma reduce_cons_lemma l_all_wf_nil istype-void eqmod_weakening l_all_cons cons_wf equal-wf-T-base bool_wf assert_wf bnot_wf not_wf istype-assert uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot length_of_cons_lemma add-commutes eqmod_refl eqmod_functionality_wrt_eqmod add_functionality_wrt_eqmod minus-zero add-zero zero-add equipollent-nsub equipollent_functionality_wrt_equipollent2 equipollent_inversion filter_wf4 subtype_rel_list_set biject_wf hd_wf intformeq_wf int_formula_prop_eq_lemma l_all_iff orbit-closed istype-false less_than_wf fun_exp1_lemma select0 list-cases product_subtype_list reduce_hd_cons_lemma nil_wf non_neg_length itermAdd_wf int_term_value_add_lemma member_singleton decidable__equal_int_seg no_repeats_filter pairwise-implies l_disjoint_wf int_seg_subtype_nat lelt_wf squash_wf true_wf l_disjoint-symmetry hd_member null_nil_lemma null_cons_lemma singleton-orbit l_exists_iff or_wf length-one-iff nil_member not-lt-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add_functionality_wrt_le add-associates le-add-cancel orbit-transitive exists_wf nat_wf fun_exp_wf fun_exp-fixedpoint subtype_rel_self iff_weakening_equal member_filter subtype_rel_sets_simple listp_properties istype-less_than istype-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination independent_functionElimination hypothesis independent_isectElimination instantiate cumulativity intEquality equalityTransitivity equalitySymmetry setElimination rename because_Cache imageElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination productIsType universeEquality functionIsType setEquality applyEquality isectIsType unionIsType equalityIstype baseClosed sqequalBase inhabitedIsType functionEquality unionEquality setIsType equalityElimination addEquality closedConclusion isect_memberEquality_alt productEquality equalityIsType1 dependent_set_memberEquality_alt functionExtensionality promote_hyp hypothesis_subsumption applyLambdaEquality equalityIsType4 hyp_replacement imageMemberEquality isect_memberFormation_alt axiomEquality minusEquality

Latex:
\mforall{}n,k,p:\mBbbN{}.
    ((\mexists{}T:Type
          \mexists{}f:T  {}\mrightarrow{}  T
            (T  \msim{}  \mBbbN{}n
            \mwedge{}  Inj(T;T;f)
            \mwedge{}  \{x:T|  (f  x)  =  x\}    \msim{}  \mBbbN{}k
            \mwedge{}  (\mforall{}L:T  List.  (||L||  =  1)  \mvee{}  (p  |  ||L||)  supposing  orbit(T;f;L))))
    {}\mRightarrow{}  (n  \mequiv{}  k  mod  p))



Date html generated: 2020_05_19-PM-10_03_29
Last ObjectModification: 2020_01_01-AM-10_06_47

Theory : num_thy_1


Home Index