Nuprl Lemma : eqmod-by-orbits
∀n,k,p:ℕ.
  ((∃T:Type
     ∃f:T ⟶ T
      (T ~ ℕn
      ∧ Inj(T;T;f)
      ∧ {x:T| (f x) = x ∈ T}  ~ ℕk
      ∧ (∀L:T List. (||L|| = 1 ∈ ℤ) ∨ (p | ||L||) supposing orbit(T;f;L))))
  
⇒ (n ≡ k mod p))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
equipollent: A ~ B
, 
orbit: orbit(T;f;L)
, 
length: ||as||
, 
list: T List
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_sum: l_sum(L)
, 
iff: P 
⇐⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
rev_implies: P 
⇐ Q
, 
eqmod: a ≡ b mod m
, 
subtract: n - m
, 
top: Top
, 
cand: A c∧ B
, 
equipollent: A ~ B
, 
less_than': less_than'(a;b)
, 
compose: f o g
, 
true: True
, 
cons: [a / b]
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
biject: Bij(A;B;f)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
no_repeats: no_repeats(T;l)
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
assert: ↑b
, 
orbit: orbit(T;f;L)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
listp: A List+
, 
l_member: (x ∈ l)
Lemmas referenced : 
count-by-orbits, 
subtype_base_sq, 
int_subtype_base, 
select_wf, 
list_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
istype-universe, 
equipollent_wf, 
inject_wf, 
equal_wf, 
orbit_wf, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
divides_wf, 
istype-nat, 
list_induction, 
l_all_wf, 
equal-wf-base, 
l_member_wf, 
eqmod_wf, 
l_sum_wf, 
map_wf, 
top_wf, 
filter_wf5, 
subtype_rel_list, 
eq_int_wf, 
map_nil_lemma, 
filter_nil_lemma, 
reduce_nil_lemma, 
length_of_nil_lemma, 
map_cons_lemma, 
filter_cons_lemma, 
reduce_cons_lemma, 
l_all_wf_nil, 
istype-void, 
eqmod_weakening, 
l_all_cons, 
cons_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
length_of_cons_lemma, 
add-commutes, 
eqmod_refl, 
eqmod_functionality_wrt_eqmod, 
add_functionality_wrt_eqmod, 
minus-zero, 
add-zero, 
zero-add, 
equipollent-nsub, 
equipollent_functionality_wrt_equipollent2, 
equipollent_inversion, 
filter_wf4, 
subtype_rel_list_set, 
biject_wf, 
hd_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
l_all_iff, 
orbit-closed, 
istype-false, 
less_than_wf, 
fun_exp1_lemma, 
select0, 
list-cases, 
product_subtype_list, 
reduce_hd_cons_lemma, 
nil_wf, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
member_singleton, 
decidable__equal_int_seg, 
no_repeats_filter, 
pairwise-implies, 
l_disjoint_wf, 
int_seg_subtype_nat, 
lelt_wf, 
squash_wf, 
true_wf, 
l_disjoint-symmetry, 
hd_member, 
null_nil_lemma, 
null_cons_lemma, 
singleton-orbit, 
l_exists_iff, 
or_wf, 
length-one-iff, 
nil_member, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
orbit-transitive, 
exists_wf, 
nat_wf, 
fun_exp_wf, 
fun_exp-fixedpoint, 
subtype_rel_self, 
iff_weakening_equal, 
member_filter, 
subtype_rel_sets_simple, 
listp_properties, 
istype-less_than, 
istype-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
independent_functionElimination, 
hypothesis, 
independent_isectElimination, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
because_Cache, 
imageElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
productIsType, 
universeEquality, 
functionIsType, 
setEquality, 
applyEquality, 
isectIsType, 
unionIsType, 
equalityIstype, 
baseClosed, 
sqequalBase, 
inhabitedIsType, 
functionEquality, 
unionEquality, 
setIsType, 
equalityElimination, 
addEquality, 
closedConclusion, 
isect_memberEquality_alt, 
productEquality, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
promote_hyp, 
hypothesis_subsumption, 
applyLambdaEquality, 
equalityIsType4, 
hyp_replacement, 
imageMemberEquality, 
isect_memberFormation_alt, 
axiomEquality, 
minusEquality
Latex:
\mforall{}n,k,p:\mBbbN{}.
    ((\mexists{}T:Type
          \mexists{}f:T  {}\mrightarrow{}  T
            (T  \msim{}  \mBbbN{}n
            \mwedge{}  Inj(T;T;f)
            \mwedge{}  \{x:T|  (f  x)  =  x\}    \msim{}  \mBbbN{}k
            \mwedge{}  (\mforall{}L:T  List.  (||L||  =  1)  \mvee{}  (p  |  ||L||)  supposing  orbit(T;f;L))))
    {}\mRightarrow{}  (n  \mequiv{}  k  mod  p))
Date html generated:
2020_05_19-PM-10_03_29
Last ObjectModification:
2020_01_01-AM-10_06_47
Theory : num_thy_1
Home
Index