Nuprl Lemma : equipollent-nsub

n,m:ℕ.  (n m ∈ ℤ ⇐⇒ ℕ~ ℕm)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q nat: uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] guard: {T} sq_type: SQType(T) uimplies: supposing a biject: Bij(A;B;f) exists: x:A. B[x] equipollent: B top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥ 
Lemmas referenced :  nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf pigeon-hole equipollent_inversion ext-eq_weakening equipollent_weakening_ext-eq subtype_base_sq int_subtype_base equal_wf equipollent_wf int_seg_wf nat_wf
Rules used in proof :  natural_numberEquality hypothesis hypothesisEquality rename setElimination intEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination cumulativity instantiate productElimination computeAll sqequalRule voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality dependent_pairFormation unionElimination because_Cache

Latex:
\mforall{}n,m:\mBbbN{}.    (n  =  m  \mLeftarrow{}{}\mRightarrow{}  \mBbbN{}n  \msim{}  \mBbbN{}m)



Date html generated: 2018_05_21-PM-00_52_32
Last ObjectModification: 2017_12_07-PM-06_17_35

Theory : equipollence!!cardinality!


Home Index