Nuprl Lemma : add_functionality_wrt_eqmod

m,a,a',b,b':ℤ.  ((a ≡ a' mod m)  (b ≡ b' mod m)  ((a b) ≡ (a' b') mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q add: m int:
Definitions unfolded in proof :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtract: m top: Top prop:
Lemmas referenced :  divisor_of_sum subtract_wf add-associates istype-void minus-add minus-one-mul add-swap general_add_assoc divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis independent_functionElimination Error :isect_memberEquality_alt,  voidElimination because_Cache Error :universeIsType,  Error :inhabitedIsType

Latex:
\mforall{}m,a,a',b,b':\mBbbZ{}.    ((a  \mequiv{}  a'  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  b'  mod  m)  {}\mRightarrow{}  ((a  +  b)  \mequiv{}  (a'  +  b')  mod  m))



Date html generated: 2019_06_20-PM-02_24_27
Last ObjectModification: 2019_01_17-AM-09_52_07

Theory : num_thy_1


Home Index