Nuprl Lemma : rotate-order

[n:ℕ]. (rot(n)^n x.x) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  rotate: rot(n) fun_exp: f^n int_seg: {i..j-} nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T true: True prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q sq_type: SQType(T) all: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top nat_plus: + subtract: m
Lemmas referenced :  int_seg_wf istype-nat equal_wf squash_wf true_wf istype-universe iterate-rotate subtype_rel_self iff_weakening_equal subtype_base_sq int_subtype_base rem_rec_case int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le decidable__lt istype-less_than add-associates minus-one-mul add-swap add-commutes add-mul-special zero-mul zero-add rem_base_case trivial-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut Error :functionExtensionality_alt,  sqequalRule Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination imageElimination applyEquality Error :lambdaEquality_alt,  equalityTransitivity equalitySymmetry Error :inhabitedIsType,  instantiate universeEquality imageMemberEquality baseClosed because_Cache independent_isectElimination independent_functionElimination cumulativity intEquality dependent_functionElimination Error :dependent_set_memberEquality_alt,  addEquality unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation

Latex:
\mforall{}[n:\mBbbN{}].  (rot(n)\^{}n  =  (\mlambda{}x.x))



Date html generated: 2019_06_20-PM-01_37_13
Last ObjectModification: 2019_03_06-AM-10_51_42

Theory : list_1


Home Index