Nuprl Lemma : multiply_functionality_wrt_eqmod

m,a,a',b,b':ℤ.  ((a ≡ a' mod m)  (b ≡ b' mod m)  ((a b) ≡ (a' b') mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] eqmod: a ≡ mod m top: Top subtract: m
Lemmas referenced :  istype-int subtract_wf divides_wf divisor_of_mul divisor_of_sum istype-void mul-distributes-right add-associates minus-one-mul mul-associates mul-commutes add-commutes add-mul-special zero-mul zero-add
Rules used in proof :  Error :inhabitedIsType,  hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  Error :lambdaFormation_alt,  computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution because_Cache independent_functionElimination dependent_functionElimination multiplyEquality Error :isect_memberEquality_alt,  voidElimination minusEquality natural_numberEquality

Latex:
\mforall{}m,a,a',b,b':\mBbbZ{}.    ((a  \mequiv{}  a'  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  b'  mod  m)  {}\mRightarrow{}  ((a  *  b)  \mequiv{}  (a'  *  b')  mod  m))



Date html generated: 2019_06_20-PM-02_24_30
Last ObjectModification: 2019_01_15-PM-03_27_14

Theory : num_thy_1


Home Index