Nuprl Lemma : divisor_of_mul

a,b,c:ℤ.  ((a b)  (a (b c)))


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] divides: a exists: x:A. B[x] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  divides_wf equal-wf-base int_subtype_base decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality productElimination dependent_pairFormation multiplyEquality sqequalRule baseApply closedConclusion baseClosed applyEquality because_Cache dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll hyp_replacement equalitySymmetry Error :applyLambdaEquality

Latex:
\mforall{}a,b,c:\mBbbZ{}.    ((a  |  b)  {}\mRightarrow{}  (a  |  (b  *  c)))



Date html generated: 2016_10_21-AM-11_07_40
Last ObjectModification: 2016_07_12-AM-06_00_24

Theory : num_thy_1


Home Index