Nuprl Lemma : fermat-little2
∀p:ℕ. (prime(p) 
⇒ (∀x:ℕ. x^p - 1 ≡ 1 mod p supposing ¬(p | x)))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
prime: prime(a)
, 
divides: b | a
, 
exp: i^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
prime: prime(a)
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
coprime: CoPrime(a,b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
exp: i^n
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__equal_int, 
true_wf, 
squash_wf, 
primrec1_lemma, 
false_wf, 
exp_add, 
mul-one, 
int_subtype_base, 
subtype_base_sq, 
coprime_iff_ndivides, 
gcd_p_sym, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtract_wf, 
prime_wf, 
nat_wf, 
not_wf, 
exp_wf2, 
eqmod_cancellation, 
fermat-little, 
divides_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
natural_numberEquality, 
productElimination, 
dependent_set_memberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
applyEquality, 
imageElimination, 
addEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}.  x\^{}p  -  1  \mequiv{}  1  mod  p  supposing  \mneg{}(p  |  x)))
Date html generated:
2016_05_14-PM-09_29_43
Last ObjectModification:
2016_01_14-PM-11_31_35
Theory : num_thy_1
Home
Index