Nuprl Lemma : fermat-little2

p:ℕ(prime(p)  (∀x:ℕx^p 1 ≡ mod supposing ¬(p x)))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m prime: prime(a) divides: a exp: i^n nat: uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T not: ¬A false: False uall: [x:A]. B[x] nat: prop: prime: prime(a) and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top coprime: CoPrime(a,b) iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) guard: {T} le: A ≤ B less_than': less_than'(a;b) exp: i^n squash: T true: True
Lemmas referenced :  int_term_value_add_lemma itermAdd_wf decidable__equal_int true_wf squash_wf primrec1_lemma false_wf exp_add mul-one int_subtype_base subtype_base_sq coprime_iff_ndivides gcd_p_sym le_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtract_wf prime_wf nat_wf not_wf exp_wf2 eqmod_cancellation fermat-little divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination lemma_by_obid isectElimination setElimination rename hypothesis independent_functionElimination natural_numberEquality productElimination dependent_set_memberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll instantiate because_Cache equalityTransitivity equalitySymmetry cumulativity applyEquality imageElimination addEquality imageMemberEquality baseClosed

Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}.  x\^{}p  -  1  \mequiv{}  1  mod  p  supposing  \mneg{}(p  |  x)))



Date html generated: 2016_05_14-PM-09_29_43
Last ObjectModification: 2016_01_14-PM-11_31_35

Theory : num_thy_1


Home Index