Nuprl Lemma : totient_wf
∀[n:ℕ]. (totient(n) ∈ ℕ)
Proof
Definitions occuring in Statement : 
totient: totient(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
totient: totient(n)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
length_wf_nat, 
residue_wf, 
residues-mod_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (totient(n)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_15-PM-07_32_22
Last ObjectModification:
2015_12_27-AM-11_18_25
Theory : general
Home
Index