Nuprl Lemma : totient_wf

[n:ℕ]. (totient(n) ∈ ℕ)


Proof




Definitions occuring in Statement :  totient: totient(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T totient: totient(n) all: x:A. B[x]
Lemmas referenced :  length_wf_nat residue_wf residues-mod_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (totient(n)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-07_32_22
Last ObjectModification: 2015_12_27-AM-11_18_25

Theory : general


Home Index