Nuprl Lemma : Maximal_order_type_wf

Maximal_order_type() ∈ ∀x:WFTRO{i:l}(). (x order-type-less() max-WO{i:l}())


Proof




Definitions occuring in Statement :  Maximal_order_type: Maximal_order_type() max-WO: max-WO{i:l}() WFTRO: WFTRO{i:l}() order-type-less: order-type-less() infix_ap: y all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T order-type-less-maximal-ext Maximal_order_type: Maximal_order_type()
Lemmas referenced :  order-type-less-maximal-ext
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity instantiate extract_by_obid hypothesis sqequalRule sqequalHypSubstitution

Latex:
Maximal\_order\_type()  \mmember{}  \mforall{}x:WFTRO\{i:l\}().  (x  order-type-less()  max-WO\{i:l\}())



Date html generated: 2018_05_21-PM-07_15_26
Last ObjectModification: 2018_05_19-PM-04_45_46

Theory : general


Home Index