Nuprl Lemma : Maximal_order_type_wf
Maximal_order_type() ∈ ∀x:WFTRO{i:l}(). (x order-type-less() max-WO{i:l}())
Proof
Definitions occuring in Statement :
Maximal_order_type: Maximal_order_type()
,
max-WO: max-WO{i:l}()
,
WFTRO: WFTRO{i:l}()
,
order-type-less: order-type-less()
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
order-type-less-maximal-ext,
Maximal_order_type: Maximal_order_type()
Lemmas referenced :
order-type-less-maximal-ext
Rules used in proof :
cut,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
sqequalHypSubstitution
Latex:
Maximal\_order\_type() \mmember{} \mforall{}x:WFTRO\{i:l\}(). (x order-type-less() max-WO\{i:l\}())
Date html generated:
2018_05_21-PM-07_15_26
Last ObjectModification:
2018_05_19-PM-04_45_46
Theory : general
Home
Index