Nuprl Lemma : Maximal_order_type_wf
Maximal_order_type() ∈ ∀x:WFTRO{i:l}(). (x order-type-less() max-WO{i:l}())
Proof
Definitions occuring in Statement : 
Maximal_order_type: Maximal_order_type()
, 
max-WO: max-WO{i:l}()
, 
WFTRO: WFTRO{i:l}()
, 
order-type-less: order-type-less()
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
order-type-less-maximal-ext, 
Maximal_order_type: Maximal_order_type()
Lemmas referenced : 
order-type-less-maximal-ext
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution
Latex:
Maximal\_order\_type()  \mmember{}  \mforall{}x:WFTRO\{i:l\}().  (x  order-type-less()  max-WO\{i:l\}())
Date html generated:
2018_05_21-PM-07_15_26
Last ObjectModification:
2018_05_19-PM-04_45_46
Theory : general
Home
Index