Step
*
of Lemma
ap-con_wf
∀[F:Type ⟶ Type]. ∀[T:{T:Type| T ⊆r Base} ]. ∀[con:Constr(T.F[T])]. ∀[L:T List]. (ap-con(con;L) ∈ F[T])
BY
{ (BasicUniformUnivCD Auto THEN Unfolds ``member ap-con`` 0 THEN With ⌜T⌝ (DVar `con')⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[F:Type {}\mrightarrow{} Type]. \mforall{}[T:\{T:Type| T \msubseteq{}r Base\} ]. \mforall{}[con:Constr(T.F[T])]. \mforall{}[L:T List].
(ap-con(con;L) \mmember{} F[T])
By
Latex:
(BasicUniformUnivCD Auto THEN Unfolds ``member ap-con`` 0 THEN With \mkleeneopen{}T\mkleeneclose{} (DVar `con')\mcdot{} THEN Auto)
Home
Index