Nuprl Lemma : ap-con_wf

[F:Type ⟶ Type]. ∀[T:{T:Type| T ⊆Base} ]. ∀[con:Constr(T.F[T])]. ∀[L:T List].  (ap-con(con;L) ∈ F[T])


Proof




Definitions occuring in Statement :  ap-con: ap-con(con;L) constructor: Constr(T.F[T]) list: List subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] ap-con: ap-con(con;L) member: t ∈ T constructor: Constr(T.F[T]) subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_rel_wf base_wf list_wf constructor_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalHypSubstitution isectElimination hypothesisEquality applyEquality cut sqequalRule lambdaEquality because_Cache equalityTransitivity equalitySymmetry hypothesis isectEquality setEquality universeEquality cumulativity lemma_by_obid thin functionEquality setElimination rename

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[T:\{T:Type|  T  \msubseteq{}r  Base\}  ].  \mforall{}[con:Constr(T.F[T])].  \mforall{}[L:T  List].
    (ap-con(con;L)  \mmember{}  F[T])



Date html generated: 2016_05_15-PM-06_55_49
Last ObjectModification: 2015_12_27-AM-11_40_11

Theory : general


Home Index