Nuprl Lemma : constructor_wf

[F:Type ⟶ Type]. (Constr(T.F[T]) ∈ 𝕌')


Proof




Definitions occuring in Statement :  constructor: Constr(T.F[T]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T constructor: Constr(T.F[T]) so_apply: x[s]
Lemmas referenced :  subtype_rel_wf base_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isectEquality setEquality universeEquality cumulativity lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (Constr(T.F[T])  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_15-PM-06_55_21
Last ObjectModification: 2015_12_27-AM-11_40_53

Theory : general


Home Index