Nuprl Lemma : constructor_wf
∀[F:Type ⟶ Type]. (Constr(T.F[T]) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
constructor: Constr(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
constructor: Constr(T.F[T])
, 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_wf, 
base_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
setEquality, 
universeEquality, 
cumulativity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (Constr(T.F[T])  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_15-PM-06_55_21
Last ObjectModification:
2015_12_27-AM-11_40_53
Theory : general
Home
Index