Step
*
of Lemma
awf-system-subtype
∀[I,A:Type]. (awf-system{i:l}(I;A) ⊆r ((I ⟶ awf(A)) ⟶ I ⟶ awf(A)))
BY
{ xxx(Auto
THEN (InstLemma `corec-ext` [⌜λ2T.A + (T List)⌝]⋅ THENA Auto)
THEN Fold `awf` (-1)
THEN Assert ⌜(A + (awf(A) List)) ⊆r awf(A)⌝⋅
THEN Auto)xxx }
Latex:
Latex:
\mforall{}[I,A:Type]. (awf-system\{i:l\}(I;A) \msubseteq{}r ((I {}\mrightarrow{} awf(A)) {}\mrightarrow{} I {}\mrightarrow{} awf(A)))
By
Latex:
xxx(Auto
THEN (InstLemma `corec-ext` [\mkleeneopen{}\mlambda{}\msubtwo{}T.A + (T List)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Fold `awf` (-1)
THEN Assert \mkleeneopen{}(A + (awf(A) List)) \msubseteq{}r awf(A)\mkleeneclose{}\mcdot{}
THEN Auto)xxx
Home
Index