Nuprl Lemma : awf-system-subtype

[I,A:Type].  (awf-system{i:l}(I;A) ⊆((I ⟶ awf(A)) ⟶ I ⟶ awf(A)))


Proof




Definitions occuring in Statement :  awf-system: awf-system{i:l}(I;A) awf: awf(T) subtype_rel: A ⊆B uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q awf: awf(T) guard: {T} awf-system: awf-system{i:l}(I;A) and: P ∧ Q or: P ∨ Q subtype_rel: A ⊆B cand: c∧ B prop:
Lemmas referenced :  corec-ext list_wf continuous-monotone-union continuous-monotone-constant continuous-monotone-list continuous-monotone-id ext-eq_inversion awf_wf subtype_rel_weakening isect2_subtype_rel3 subtype_rel_wf top_wf subtype_rel_self subtype_rel_dep_function equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality unionEquality cumulativity hypothesisEquality hypothesis universeEquality independent_isectElimination dependent_functionElimination independent_functionElimination instantiate isectEquality setEquality productEquality functionEquality setElimination rename inlFormation independent_pairFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry lambdaFormation functionExtensionality applyEquality because_Cache axiomEquality isect_memberEquality

Latex:
\mforall{}[I,A:Type].    (awf-system\{i:l\}(I;A)  \msubseteq{}r  ((I  {}\mrightarrow{}  awf(A))  {}\mrightarrow{}  I  {}\mrightarrow{}  awf(A)))



Date html generated: 2018_05_21-PM-08_56_31
Last ObjectModification: 2017_07_26-PM-06_20_17

Theory : general


Home Index