Nuprl Lemma : awf-system-subtype
∀[I,A:Type].  (awf-system{i:l}(I;A) ⊆r ((I ⟶ awf(A)) ⟶ I ⟶ awf(A)))
Proof
Definitions occuring in Statement : 
awf-system: awf-system{i:l}(I;A)
, 
awf: awf(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
awf: awf(T)
, 
guard: {T}
, 
awf-system: awf-system{i:l}(I;A)
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
prop: ℙ
Lemmas referenced : 
corec-ext, 
list_wf, 
continuous-monotone-union, 
continuous-monotone-constant, 
continuous-monotone-list, 
continuous-monotone-id, 
ext-eq_inversion, 
awf_wf, 
subtype_rel_weakening, 
isect2_subtype_rel3, 
subtype_rel_wf, 
top_wf, 
subtype_rel_self, 
subtype_rel_dep_function, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
isectEquality, 
setEquality, 
productEquality, 
functionEquality, 
setElimination, 
rename, 
inlFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
functionExtensionality, 
applyEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[I,A:Type].    (awf-system\{i:l\}(I;A)  \msubseteq{}r  ((I  {}\mrightarrow{}  awf(A))  {}\mrightarrow{}  I  {}\mrightarrow{}  awf(A)))
Date html generated:
2018_05_21-PM-08_56_31
Last ObjectModification:
2017_07_26-PM-06_20_17
Theory : general
Home
Index