Nuprl Lemma : awf_wf

[T:Type]. (awf(T) ∈ Type)


Proof




Definitions occuring in Statement :  awf: awf(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T awf: awf(T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality unionEquality hypothesisEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  (awf(T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-07_24_11
Last ObjectModification: 2015_12_27-AM-11_24_19

Theory : general


Home Index