Nuprl Lemma : church_snd_lemma
∀y,x:Top.  (church-snd() (church-pair() x y) ~ y)
Proof
Definitions occuring in Statement : 
church-snd: church-snd()
, 
church-pair: church-pair()
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
church-pair: church-pair()
, 
church-snd: church-snd()
, 
church-false: church-false()
Lemmas referenced : 
top_wf
Rules used in proof : 
lemma_by_obid, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalRule
Latex:
\mforall{}y,x:Top.    (church-snd()  (church-pair()  x  y)  \msim{}  y)
Date html generated:
2020_05_20-AM-08_06_06
Last ObjectModification:
2020_01_24-PM-00_22_30
Theory : general
Home
Index