Step
*
2
1
2
1
2
1
of Lemma
combinations_aux_rem_wf
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ].  (combinations_aux_rem(b;n - 1;m;k) ∈ ℕ)
5. ¬(n = 0 ∈ ℤ)
6. b : ℕ
7. m : ℕ
8. m = 0 ∈ ℤ
9. ∀n:ℕ. ∀x:ℤ.  (combinations_aux_rem(0;n;x;k) = 0 ∈ ℤ)
10. combinations_aux_rem(0;n - 1;0 - 1;k) = 0 ∈ ℤ
⊢ combinations_aux_rem(0;n - 1;0 - 1;k) ∈ ℕ
BY
{ xxxHypSubst' (-1) 0xxx }
1
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ].  (combinations_aux_rem(b;n - 1;m;k) ∈ ℕ)
5. ¬(n = 0 ∈ ℤ)
6. b : ℕ
7. m : ℕ
8. m = 0 ∈ ℤ
9. ∀n:ℕ. ∀x:ℤ.  (combinations_aux_rem(0;n;x;k) = 0 ∈ ℤ)
10. combinations_aux_rem(0;n - 1;0 - 1;k) = 0 ∈ ℤ
⊢ 0 ∈ ℕ
Latex:
Latex:
1.  k  :  \mBbbN{}\msupplus{}
2.  n  :  \mBbbZ{}
3.  0  <  n
4.  \mforall{}[b,m:\mBbbN{}].    (combinations\_aux\_rem(b;n  -  1;m;k)  \mmember{}  \mBbbN{})
5.  \mneg{}(n  =  0)
6.  b  :  \mBbbN{}
7.  m  :  \mBbbN{}
8.  m  =  0
9.  \mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbZ{}.    (combinations\_aux\_rem(0;n;x;k)  =  0)
10.  combinations\_aux\_rem(0;n  -  1;0  -  1;k)  =  0
\mvdash{}  combinations\_aux\_rem(0;n  -  1;0  -  1;k)  \mmember{}  \mBbbN{}
By
Latex:
xxxHypSubst'  (-1)  0xxx
Home
Index