Nuprl Lemma : combinations_aux_rem_wf

[k:ℕ+]. ∀[n,b,m:ℕ].  (combinations_aux_rem(b;n;m;k) ∈ ℕ)


Proof




Definitions occuring in Statement :  combinations_aux_rem: combinations_aux_rem(b;n;m;k) nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: combinations_aux_rem: combinations_aux_rem(b;n;m;k) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B has-value: (a)↓ sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  squash: T true: True le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf nat_plus_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf value-type-has-value decidable__equal_int subtype_base_sq uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf mul-zero zero-rem subtype_rel_sets nequal_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma int-value-type zero-mul squash_wf true_wf iff_weakening_equal le_wf false_wf remainder_wf mul_bounds_1a
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache callbyvalueReduce sqleReflexivity unionElimination baseApply closedConclusion baseClosed applyEquality instantiate cumulativity equalityElimination productElimination impliesFunctionality setEquality applyLambdaEquality remainderEquality imageElimination universeEquality imageMemberEquality dependent_set_memberEquality multiplyEquality

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[n,b,m:\mBbbN{}].    (combinations\_aux\_rem(b;n;m;k)  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-08_10_43
Last ObjectModification: 2017_07_26-PM-05_46_13

Theory : general


Home Index