Nuprl Lemma : zero-rem

[m:ℤ-o]. (0 rem 0)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q
Lemmas referenced :  zero-div-rem int_nzero_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination

Latex:
\mforall{}[m:\mBbbZ{}\msupminus{}\msupzero{}].  (0  rem  m  \msim{}  0)



Date html generated: 2016_05_14-AM-07_23_42
Last ObjectModification: 2015_12_26-PM-01_29_59

Theory : int_2


Home Index