Nuprl Lemma : zero-rem
∀[m:ℤ-o]. (0 rem m ~ 0)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
Lemmas referenced : 
zero-div-rem, 
int_nzero_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination
Latex:
\mforall{}[m:\mBbbZ{}\msupminus{}\msupzero{}].  (0  rem  m  \msim{}  0)
Date html generated:
2016_05_14-AM-07_23_42
Last ObjectModification:
2015_12_26-PM-01_29_59
Theory : int_2
Home
Index