Nuprl Lemma : comp-nat-ind-ext
∀[P:ℕ ⟶ ℙ]. ((∀i:ℕ. ((∀j:ℕi. P[j]) 
⇒ P[i])) 
⇒ (∀i:ℕ. P[i]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
complete_nat_ind, 
any: any x
Lemmas referenced : 
complete_nat_ind
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}i.  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))
Date html generated:
2018_05_21-PM-09_04_03
Last ObjectModification:
2018_05_19-PM-05_08_30
Theory : general
Home
Index