Nuprl Lemma : comp-nat-ind-ext

[P:ℕ ⟶ ℙ]. ((∀i:ℕ((∀j:ℕi. P[j])  P[i]))  (∀i:ℕP[i]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T complete_nat_ind any: any x
Lemmas referenced :  complete_nat_ind
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}i.  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))



Date html generated: 2018_05_21-PM-09_04_03
Last ObjectModification: 2018_05_19-PM-05_08_30

Theory : general


Home Index