Nuprl Lemma : equipollent-nat-squared

ℕ ~ ℕ × ℕ


Proof




Definitions occuring in Statement :  equipollent: B nat: product: x:A × B[x]
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  coded-pair_wf nat_wf code-pair-bijection biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productEquality

Latex:
\mBbbN{}  \msim{}  \mBbbN{}  \mtimes{}  \mBbbN{}



Date html generated: 2016_05_15-PM-05_25_10
Last ObjectModification: 2015_12_27-PM-02_13_03

Theory : general


Home Index