Nuprl Lemma : equipollent-nat-squared
ℕ ~ ℕ × ℕ
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
nat: ℕ
, 
product: x:A × B[x]
Definitions unfolded in proof : 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
coded-pair_wf, 
nat_wf, 
code-pair-bijection, 
biject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productEquality
Latex:
\mBbbN{}  \msim{}  \mBbbN{}  \mtimes{}  \mBbbN{}
Date html generated:
2016_05_15-PM-05_25_10
Last ObjectModification:
2015_12_27-PM-02_13_03
Theory : general
Home
Index