Step
*
2
2
of Lemma
factorit_wf
1. ∀[d:ℕ]. ∀[x:ℕ+]. ∀[b:ℕ].
(x - b * b < d
⇒ (2 ≤ b)
⇒ (∀[tried:{L:{p:ℕ| prime(p) ∧ p < b} List| ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )))
2. x : ℕ+
3. b : ℕ
4. 2 ≤ b
5. ¬x < b * b
⊢ ∀[tried:{L:{p:ℕ| prime(p) ∧ p < b} List| ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)} List| reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs))\000C ∈ ℤ} )
BY
{ ((InstHyp [⌜(x - b * b) + 1⌝;⌜x⌝;⌜b⌝] 1⋅ THENA Auto') THEN Trivial)⋅ }
Latex:
Latex:
1. \mforall{}[d:\mBbbN{}]. \mforall{}[x:\mBbbN{}\msupplus{}]. \mforall{}[b:\mBbbN{}].
(x - b * b < d
{}\mRightarrow{} (2 \mleq{} b)
{}\mRightarrow{} (\mforall{}[tried:\{L:\{p:\mBbbN{}| prime(p) \mwedge{} p < b\} List|
\mforall{}p:\{p:\mBbbN{}| prime(p)\} . (p < b {}\mRightarrow{} ((p \mmember{} L) \mwedge{} (\mneg{}(p | x))))\} ].
\mforall{}[facs:\{p:\mBbbN{}| prime(p)\} List].
(factorit(x;b;tried;facs) \mmember{} \{L:\{p:\mBbbN{}| prime(p)\} List|
reduce(\mlambda{}p,q. (p * q);1;L) = (x * reduce(\mlambda{}p,q. (p * q);1;facs\000C))\} )))
2. x : \mBbbN{}\msupplus{}
3. b : \mBbbN{}
4. 2 \mleq{} b
5. \mneg{}x < b * b
\mvdash{} \mforall{}[tried:\{L:\{p:\mBbbN{}| prime(p) \mwedge{} p < b\} List| \mforall{}p:\{p:\mBbbN{}| prime(p)\} . (p < b {}\mRightarrow{} ((p \mmember{} L) \mwedge{} (\mneg{}(p | x))))\} \000C].
\mforall{}[facs:\{p:\mBbbN{}| prime(p)\} List].
(factorit(x;b;tried;facs) \mmember{} \{L:\{p:\mBbbN{}| prime(p)\} List|
reduce(\mlambda{}p,q. (p * q);1;L) = (x * reduce(\mlambda{}p,q. (p * q);1;facs))\} )
By
Latex:
((InstHyp [\mkleeneopen{}(x - b * b) + 1\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] 1\mcdot{} THENA Auto') THEN Trivial)\mcdot{}
Home
Index