Step
*
2
1
of Lemma
finite-function-equipollent-tuple
1. n : ℤ@i
2. [%1] : 0 < n@i
3. ∀F:ℕn - 1 ⟶ Type. i:ℕn - 1 ⟶ F[i] ~ tuple-type(map(λi.F[i];upto(n - 1)))@i'
4. F : ℕn ⟶ Type@i'
⊢ i:ℕn ⟶ F[i] ~ tuple-type(map(λi.F[i];upto(n - 1) @ [n - 1]))
BY
{ ((RWO "map_append_sq" 0 THENA Auto) THEN Reduce 0) }
1
1. n : ℤ@i
2. [%1] : 0 < n@i
3. ∀F:ℕn - 1 ⟶ Type. i:ℕn - 1 ⟶ F[i] ~ tuple-type(map(λi.F[i];upto(n - 1)))@i'
4. F : ℕn ⟶ Type@i'
⊢ i:ℕn ⟶ F[i] ~ tuple-type(map(λi.F[i];upto(n - 1)) @ [F[n - 1]])
Latex:
Latex:
1. n : \mBbbZ{}@i
2. [\%1] : 0 < n@i
3. \mforall{}F:\mBbbN{}n - 1 {}\mrightarrow{} Type. i:\mBbbN{}n - 1 {}\mrightarrow{} F[i] \msim{} tuple-type(map(\mlambda{}i.F[i];upto(n - 1)))@i'
4. F : \mBbbN{}n {}\mrightarrow{} Type@i'
\mvdash{} i:\mBbbN{}n {}\mrightarrow{} F[i] \msim{} tuple-type(map(\mlambda{}i.F[i];upto(n - 1) @ [n - 1]))
By
Latex:
((RWO "map\_append\_sq" 0 THENA Auto) THEN Reduce 0)
Home
Index