Nuprl Lemma : finite-function-equipollent-tuple

n:ℕ. ∀F:ℕn ⟶ Type.  i:ℕn ⟶ F[i] tuple-type(map(λi.F[i];upto(n)))


Proof




Definitions occuring in Statement :  equipollent: B tuple-type: tuple-type(L) upto: upto(n) map: map(f;as) int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A nat_plus: + subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q btrue: tt
Lemmas referenced :  product_functionality_wrt_equipollent_left finite-function-equipollent null_nil_lemma tupletype_cons_lemma tuple-type-append-equipollent equipollent_inversion equipollent_functionality_wrt_equipollent2 nil_wf decidable__le cons_wf lelt_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__lt append_wf map_cons_lemma map_append_sq upto_decomp1 int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties equipollent-unit tupletype_nil_lemma map_nil_lemma nat_wf primrec-wf2 less_than_wf set_wf upto_wf map_wf tuple-type_wf equipollent_wf subtract_wf all_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin functionEquality cumulativity lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis universeEquality rename setElimination hypothesisEquality instantiate sqequalRule lambdaEquality applyEquality intEquality introduction dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_functionElimination because_Cache productElimination independent_isectElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll functionExtensionality dependent_set_memberEquality unionElimination productEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}F:\mBbbN{}n  {}\mrightarrow{}  Type.    i:\mBbbN{}n  {}\mrightarrow{}  F[i]  \msim{}  tuple-type(map(\mlambda{}i.F[i];upto(n)))



Date html generated: 2016_05_15-PM-05_50_18
Last ObjectModification: 2016_01_16-PM-00_33_52

Theory : general


Home Index