Nuprl Lemma : product_functionality_wrt_equipollent_left
∀[A,B,C,D:Type].  (A ~ B 
⇒ A × C ~ B × D supposing C = D ∈ Type)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
guard: {T}
Lemmas referenced : 
exists_wf, 
biject_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
sqequalHypSubstitution, 
productElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
extract_by_obid, 
isectElimination, 
functionEquality, 
productEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
instantiate, 
universeEquality, 
dependent_pairFormation, 
spreadEquality, 
independent_pairEquality, 
independent_pairFormation, 
promote_hyp, 
because_Cache, 
equalityUniverse, 
levelHypothesis, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  A  \mtimes{}  C  \msim{}  B  \mtimes{}  D  supposing  C  =  D)
Date html generated:
2016_10_21-AM-10_51_59
Last ObjectModification:
2016_07_12-AM-05_55_56
Theory : equipollence!!cardinality!
Home
Index