Nuprl Lemma : product_functionality_wrt_equipollent_left

[A,B,C,D:Type].  (A  A × B × supposing D ∈ Type)


Proof




Definitions occuring in Statement :  equipollent: B uimplies: supposing a uall: [x:A]. B[x] implies:  Q product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) all: x:A. B[x] pi2: snd(t) pi1: fst(t) guard: {T}
Lemmas referenced :  exists_wf biject_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename sqequalHypSubstitution productElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality,  extract_by_obid isectElimination functionEquality productEquality cumulativity hypothesisEquality lambdaEquality functionExtensionality applyEquality instantiate universeEquality dependent_pairFormation spreadEquality independent_pairEquality independent_pairFormation promote_hyp because_Cache equalityUniverse levelHypothesis dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  A  \mtimes{}  C  \msim{}  B  \mtimes{}  D  supposing  C  =  D)



Date html generated: 2016_10_21-AM-10_51_59
Last ObjectModification: 2016_07_12-AM-05_55_56

Theory : equipollence!!cardinality!


Home Index