Nuprl Lemma : equipollent-unit

[T:Type]. (T  Unit supposing ∀x,y:T.  (x y ∈ T))


Proof




Definitions occuring in Statement :  equipollent: B uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q unit: Unit universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T all: x:A. B[x] equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  it_wf unit_wf2 equal-unit unit_subtype_base biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename Error :dependent_pairFormation_alt,  closedConclusion extract_by_obid independent_pairFormation Error :equalityIsType4,  Error :universeIsType,  baseClosed isectElimination baseApply applyEquality Error :functionIsType,  Error :equalityIsType1,  universeEquality

Latex:
\mforall{}[T:Type].  (T  {}\mRightarrow{}  T  \msim{}  Unit  supposing  \mforall{}x,y:T.    (x  =  y))



Date html generated: 2019_06_20-PM-02_17_01
Last ObjectModification: 2018_10_12-PM-06_04_39

Theory : equipollence!!cardinality!


Home Index