Nuprl Lemma : equipollent-unit
∀[T:Type]. (T 
⇒ T ~ Unit supposing ∀x,y:T.  (x = y ∈ T))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
it_wf, 
unit_wf2, 
equal-unit, 
unit_subtype_base, 
biject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
rename, 
Error :dependent_pairFormation_alt, 
closedConclusion, 
extract_by_obid, 
independent_pairFormation, 
Error :equalityIsType4, 
Error :universeIsType, 
baseClosed, 
isectElimination, 
baseApply, 
applyEquality, 
Error :functionIsType, 
Error :equalityIsType1, 
universeEquality
Latex:
\mforall{}[T:Type].  (T  {}\mRightarrow{}  T  \msim{}  Unit  supposing  \mforall{}x,y:T.    (x  =  y))
Date html generated:
2019_06_20-PM-02_17_01
Last ObjectModification:
2018_10_12-PM-06_04_39
Theory : equipollence!!cardinality!
Home
Index