Step
*
2
of Lemma
fun-path-before
1. [T] : Type
2. f : T ⟶ T
3. u : T
4. v : T List
5. ∀x,y,a,b:T. a before b ∈ v
⇒ a is f*(b) supposing x=f*(y) via v
⊢ ∀x,y,a,b:T. a before b ∈ [u / v]
⇒ a is f*(b) supposing x=f*(y) via [u / v]
BY
{ xxx(Auto THEN ((RWO "fun-path-cons" (-2)) THENM (RWO "cons_before" (-1))) THEN Auto)xxx }
1
1. [T] : Type
2. f : T ⟶ T
3. u : T
4. v : T List
5. ∀x,y,a,b:T. a before b ∈ v
⇒ a is f*(b) supposing x=f*(y) via v
6. x : T
7. y : T
8. a : T
9. b : T
10. {(x = u ∈ T)
∧ ((u = (f hd(v)) ∈ T) ∧ (¬(u = hd(v) ∈ T))) ∧ hd(v)=f*(y) via v supposing 0 < ||v||
∧ y = u ∈ T supposing ¬0 < ||v||}
11. ((a = u ∈ T) ∧ (b ∈ v)) ∨ a before b ∈ v
⊢ a is f*(b)
Latex:
Latex:
1. [T] : Type
2. f : T {}\mrightarrow{} T
3. u : T
4. v : T List
5. \mforall{}x,y,a,b:T. a before b \mmember{} v {}\mRightarrow{} a is f*(b) supposing x=f*(y) via v
\mvdash{} \mforall{}x,y,a,b:T. a before b \mmember{} [u / v] {}\mRightarrow{} a is f*(b) supposing x=f*(y) via [u / v]
By
Latex:
xxx(Auto THEN ((RWO "fun-path-cons" (-2)) THENM (RWO "cons\_before" (-1))) THEN Auto)xxx
Home
Index