Nuprl Lemma : fun-path-before

[T:Type]. ∀f:T ⟶ T. ∀L:T List. ∀x,y,a,b:T.  before b ∈  is f*(b) supposing x=f*(y) via L


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) fun-path: y=f*(x) via L l_before: before y ∈ l list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: implies:  Q so_apply: x[s] fun-path: y=f*(x) via L select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] subtract: m and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] uiff: uiff(P;Q) iff: ⇐⇒ Q cons: [a b] nat_plus: + true: True subtype_rel: A ⊆B rev_implies:  Q cand: c∧ B nat: le: A ≤ B
Lemmas referenced :  list_induction all_wf isect_wf fun-path_wf l_before_wf fun-connected_wf list_wf length_of_nil_lemma stuck-spread base_wf member-less_than nil_wf less_than_wf equal-wf-T-base int_seg_wf equal-wf-base-T not_wf equal-wf-base length_wf cons_wf equal_wf select_wf length_of_cons_lemma int_seg_properties subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf fun-path-cons cons_before list-cases null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse product_subtype_list add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma reduce_hd_cons_lemma fun-connected-step squash_wf true_wf iff_weakening_equal cons_member fun-connected_transitivity fun-connected_weakening_eq l_before_member nil_member nat_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache functionExtensionality applyEquality hypothesis functionEquality independent_functionElimination rename dependent_functionElimination universeEquality baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality productElimination independent_pairEquality imageElimination axiomEquality productEquality natural_numberEquality minusEquality equalityTransitivity equalitySymmetry addEquality setElimination unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll pointwiseFunctionality promote_hyp baseApply closedConclusion hypothesis_subsumption dependent_set_memberEquality imageMemberEquality applyLambdaEquality inrFormation inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}L:T  List.  \mforall{}x,y,a,b:T.    a  before  b  \mmember{}  L  {}\mRightarrow{}  a  is  f*(b)  supposing  x=f*(y)  via  L



Date html generated: 2018_05_21-PM-07_46_23
Last ObjectModification: 2017_07_26-PM-05_23_51

Theory : general


Home Index