Nuprl Lemma : fun-path-before
∀[T:Type]. ∀f:T ⟶ T. ∀L:T List. ∀x,y,a,b:T.  a before b ∈ L 
⇒ a is f*(b) supposing x=f*(y) via L
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
fun-path: y=f*(x) via L
, 
l_before: x before y ∈ l
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
fun-path: y=f*(x) via L
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
cons: [a / b]
, 
nat_plus: ℕ+
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
nat: ℕ
, 
le: A ≤ B
Lemmas referenced : 
list_induction, 
all_wf, 
isect_wf, 
fun-path_wf, 
l_before_wf, 
fun-connected_wf, 
list_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
member-less_than, 
nil_wf, 
less_than_wf, 
equal-wf-T-base, 
int_seg_wf, 
equal-wf-base-T, 
not_wf, 
equal-wf-base, 
length_wf, 
cons_wf, 
equal_wf, 
select_wf, 
length_of_cons_lemma, 
int_seg_properties, 
subtract_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
add-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
fun-path-cons, 
cons_before, 
list-cases, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
product_subtype_list, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
reduce_hd_cons_lemma, 
fun-connected-step, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
cons_member, 
fun-connected_transitivity, 
fun-connected_weakening_eq, 
l_before_member, 
nil_member, 
nat_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
functionExtensionality, 
applyEquality, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
universeEquality, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairEquality, 
imageElimination, 
axiomEquality, 
productEquality, 
natural_numberEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
setElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
imageMemberEquality, 
applyLambdaEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}L:T  List.  \mforall{}x,y,a,b:T.    a  before  b  \mmember{}  L  {}\mRightarrow{}  a  is  f*(b)  supposing  x=f*(y)  via  L
Date html generated:
2018_05_21-PM-07_46_23
Last ObjectModification:
2017_07_26-PM-05_23_51
Theory : general
Home
Index