Nuprl Lemma : fun-connected_transitivity

[T:Type]. ∀f:T ⟶ T. ∀x,y,z:T.  (y is f*(x)  is f*(y)  is f*(x))


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fun-connected: is f*(x) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q cons: [a b] fun-path: y=f*(x) via L select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] subtract: m and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff not: ¬A uiff: uiff(P;Q) guard: {T} cand: c∧ B true: True
Lemmas referenced :  exists_wf list_wf fun-path_wf list-cases product_subtype_list length_of_nil_lemma stuck-spread base_wf last_lemma null_nil_lemma length_of_cons_lemma reduce_hd_cons_lemma null_cons_lemma false_wf append_wf cons_wf fun-path-append and_wf equal_wf nil_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis lambdaEquality functionExtensionality applyEquality functionEquality universeEquality dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality imageElimination dependent_pairFormation addLevel levelHypothesis equalityTransitivity dependent_set_memberEquality independent_pairFormation setElimination rename setEquality equalitySymmetry hyp_replacement Error :applyLambdaEquality,  because_Cache natural_numberEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y,z:T.    (y  is  f*(x)  {}\mRightarrow{}  z  is  f*(y)  {}\mRightarrow{}  z  is  f*(x))



Date html generated: 2016_10_25-AM-11_02_59
Last ObjectModification: 2016_07_12-AM-07_10_33

Theory : general


Home Index