Nuprl Lemma : fun-connected_transitivity
∀[T:Type]. ∀f:T ⟶ T. ∀x,y,z:T.  (y is f*(x) ⇒ z is f*(y) ⇒ z is f*(x))
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fun-connected: y is f*(x), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
or: P ∨ Q, 
cons: [a / b], 
fun-path: y=f*(x) via L, 
select: L[n], 
uimplies: b supposing a, 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
subtract: n - m, 
and: P ∧ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
false: False, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
not: ¬A, 
uiff: uiff(P;Q), 
guard: {T}, 
cand: A c∧ B, 
true: True
Lemmas referenced : 
exists_wf, 
list_wf, 
fun-path_wf, 
list-cases, 
product_subtype_list, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
last_lemma, 
null_nil_lemma, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
null_cons_lemma, 
false_wf, 
append_wf, 
cons_wf, 
fun-path-append, 
and_wf, 
equal_wf, 
nil_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
dependent_pairFormation, 
addLevel, 
levelHypothesis, 
equalityTransitivity, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
setEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y,z:T.    (y  is  f*(x)  {}\mRightarrow{}  z  is  f*(y)  {}\mRightarrow{}  z  is  f*(x))
Date html generated:
2016_10_25-AM-11_02_59
Last ObjectModification:
2016_07_12-AM-07_10_33
Theory : general
Home
Index