Nuprl Lemma : fun-connected_transitivity
∀[T:Type]. ∀f:T ⟶ T. ∀x,y,z:T.  (y is f*(x) 
⇒ z is f*(y) 
⇒ z is f*(x))
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
fun-connected: y is f*(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
fun-path: y=f*(x) via L
, 
select: L[n]
, 
uimplies: b supposing a
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
cand: A c∧ B
, 
true: True
Lemmas referenced : 
exists_wf, 
list_wf, 
fun-path_wf, 
list-cases, 
product_subtype_list, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
last_lemma, 
null_nil_lemma, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
null_cons_lemma, 
false_wf, 
append_wf, 
cons_wf, 
fun-path-append, 
and_wf, 
equal_wf, 
nil_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
dependent_pairFormation, 
addLevel, 
levelHypothesis, 
equalityTransitivity, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
setEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y,z:T.    (y  is  f*(x)  {}\mRightarrow{}  z  is  f*(y)  {}\mRightarrow{}  z  is  f*(x))
Date html generated:
2016_10_25-AM-11_02_59
Last ObjectModification:
2016_07_12-AM-07_10_33
Theory : general
Home
Index