Nuprl Lemma : fun-path_wf
∀[T:Type]. ∀[f:T ⟶ T]. ∀[x,y:T]. ∀[L:T List].  (x=f*(y) via L ∈ ℙ)
Proof
Definitions occuring in Statement : 
fun-path: y=f*(x) via L, 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fun-path: y=f*(x) via L, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
and: P ∧ Q, 
uimplies: b supposing a, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
less_than': less_than'(a;b), 
cons: [a / b], 
bfalse: ff, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
so_apply: x[s]
Lemmas referenced : 
less_than_wf, 
length_wf, 
equal_wf, 
hd_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
last_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
all_wf, 
int_seg_wf, 
subtract_wf, 
select_wf, 
int_seg_properties, 
decidable__lt, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
not_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x,y:T].  \mforall{}[L:T  List].    (x=f*(y)  via  L  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-07_42_51
Last ObjectModification:
2017_07_26-PM-05_20_52
Theory : general
Home
Index