Nuprl Lemma : l_before_member

[T:Type]. ∀L:T List. ∀a,b:T.  (a before b ∈  (b ∈ L))


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uimplies: supposing a top: Top assert: b ifthenelse: if then else fi  bfalse: ff not: ¬A false: False
Lemmas referenced :  sublist_wf cons_wf nil_wf list_wf member_iff_sublist sublist_transitivity sublist_tl null_cons_lemma false_wf reduce_tl_cons_lemma sublist_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :universeIsType,  universeEquality dependent_functionElimination productElimination independent_functionElimination independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a,b:T.    (a  before  b  \mmember{}  L  {}\mRightarrow{}  (b  \mmember{}  L))



Date html generated: 2019_06_20-PM-01_23_12
Last ObjectModification: 2018_09_26-PM-05_27_51

Theory : list_1


Home Index