Nuprl Lemma : l_before_member
∀[T:Type]. ∀L:T List. ∀a,b:T.  (a before b ∈ L 
⇒ (b ∈ L))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
not: ¬A
, 
false: False
Lemmas referenced : 
sublist_wf, 
cons_wf, 
nil_wf, 
list_wf, 
member_iff_sublist, 
sublist_transitivity, 
sublist_tl, 
null_cons_lemma, 
false_wf, 
reduce_tl_cons_lemma, 
sublist_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a,b:T.    (a  before  b  \mmember{}  L  {}\mRightarrow{}  (b  \mmember{}  L))
Date html generated:
2019_06_20-PM-01_23_12
Last ObjectModification:
2018_09_26-PM-05_27_51
Theory : list_1
Home
Index