Nuprl Lemma : sublist_weakening
∀[T:Type]. ∀L1,L2:T List. L1 ⊆ L2 supposing L1 = L2 ∈ (T List)
Proof
Definitions occuring in Statement :
sublist: L1 ⊆ L2
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
sublist: L1 ⊆ L2
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
exists: ∃x:A. B[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
prop: ℙ
,
nat: ℕ
,
le: A ≤ B
,
less_than: a < b
,
cand: A c∧ B
,
squash: ↓T
,
guard: {T}
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
ge: i ≥ j
,
so_apply: x[s]
Lemmas referenced :
and_wf,
equal_wf,
list_wf,
length_wf_nat,
nat_wf,
less_than_wf,
lelt_wf,
length_wf,
int_seg_wf,
id_increasing,
select_wf,
int_seg_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
increasing_wf,
all_wf,
non_neg_length,
nat_properties,
set_wf,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
axiomEquality,
hypothesis,
thin,
rename,
dependent_pairFormation,
lambdaEquality,
sqequalHypSubstitution,
setElimination,
dependent_set_memberEquality,
hypothesisEquality,
productElimination,
independent_pairFormation,
extract_by_obid,
isectElimination,
applyEquality,
setEquality,
equalityTransitivity,
equalitySymmetry,
hyp_replacement,
Error :applyLambdaEquality,
cumulativity,
natural_numberEquality,
imageElimination,
because_Cache,
independent_isectElimination,
dependent_functionElimination,
unionElimination,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
imageMemberEquality,
baseClosed,
productEquality,
functionExtensionality,
independent_functionElimination,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}L1,L2:T List. L1 \msubseteq{} L2 supposing L1 = L2
Date html generated:
2016_10_21-AM-10_01_56
Last ObjectModification:
2016_07_12-AM-05_24_09
Theory : list_1
Home
Index